资源类型

期刊论文 61

会议视频 1

年份

2023 3

2022 7

2021 8

2020 5

2019 1

2018 4

2017 3

2016 3

2015 3

2014 3

2013 5

2012 2

2011 1

2009 1

2008 2

2007 1

2006 2

2005 2

2002 3

2001 2

展开 ︾

关键词

2D—3D配准 1

BP算法 1

CMAC神经网络 1

TBM 隧洞 1

三维地震勘探 1

三维激发极化法 1

不良地质体 1

中医 1

中医药 1

中药 1

人工智能 1

仿真技术 1

传承 1

健康服务体系 1

六自由度并联平台 1

内燃机 1

创新 1

前向相位校正 1

动力学 1

展开 ︾

检索范围:

排序: 展示方式:

Fast forward kinematics algorithm for real-time and high-precision control of the 3-RPS parallel mechanism

Yue WANG, Jingjun YU, Xu PEI

《机械工程前沿(英文)》 2018年 第13卷 第3期   页码 368-375 doi: 10.1007/s11465-018-0519-5

摘要:

A new forward kinematics algorithm for the mechanism of 3-RPS (R: Revolute; P: Prismatic; S: Spherical) parallel manipulators is proposed in this study. This algorithm is primarily based on the special geometric conditions of the 3-RPS parallel mechanism, and it eliminates the errors produced by parasitic motions to improve and ensure accuracy. Specifically, the errors can be less than 10-6 . In this method, only the group of solutions that is consistent with the actual situation of the platform is obtained rapidly. This algorithm substantially improves calculation efficiency because the selected initial values are reasonable, and all the formulas in the calculation are analytical. This novel forward kinematics algorithm is well suited for real-time and high-precision control of the 3-RPS parallel mechanism.

关键词: 3-RPS parallel mechanism     forward kinematics     numerical algorithm     parasitic motion    

Inverse Kinematics Analysis of General 6R Serial Robot Mechanism Based on Groebner Base

WANG Yan, HANG Lu-bin, YANG Ting-li

《机械工程前沿(英文)》 2006年 第1卷 第1期   页码 115-124 doi: 10.1007/s11465-005-0022-7

摘要:

This study presents a solution for the inverse kinematics problem in serial 6R manipulator. Using only seven equations composed of Duffy s four kinematical equations containing three angles and three corresponding angles identical equations instead of the traditional 14 equations, the authors reduced the inverse kinematics problem in the general 6R manipulator to a univariate polynomial with a minimum degree based on the Groebner Base method. From that, they concluded that the maximum number of the solutions is 16, generally. Also, the mathematics mechanization method can be extended to solve other mechanism problems involving nonlinear equations symbolically.

关键词: identical     manipulator     univariate polynomial     mechanism     traditional    

Ahybrid biogeography-based optimization method for the inverse kinematics problem of an 8-DOF redundant

Zi-wu REN,Zhen-hua WANG,Li-ning SUN

《信息与电子工程前沿(英文)》 2015年 第16卷 第7期   页码 607-616 doi: 10.1631/FITEE.14a0335

摘要: The redundant humanoid manipulator has characteristics of multiple degrees of freedom and complex joint structure, and it is not easy to obtain its inverse kinematics solution. The inverse kinematics problem of a humanoid manipulator can be formulated as an equivalent minimization problem, and thus it can be solved using some numerical optimization methods. Biogeography-based optimization (BBO) is a new biogeography inspired optimization algorithm, and it can be adopted to solve the inverse kinematics problem of a humanoid manipulator. The standard BBO algorithm that uses traditional migration and mutation operators suffers from slow convergence and prematurity. A hybrid biogeography-based optimization (HBBO) algorithm, which is based on BBO and differential evolution (DE), is presented. In this hybrid algorithm, new habitats in the ecosystem are produced through a hybrid migration operator, that is, the BBO migration strategy and DE/best/1/bin differential strategy, to alleviate slow convergence at the later evolution stage of the algorithm. In addition, a Gaussian mutation operator is adopted to enhance the exploration ability and improve the diversity of the population. Based on these, an 8-DOF (degree of freedom) redundant humanoid manipulator is employed as an example. The end-effector error (position and orientation) and the ‘away limitation level’ value of the 8-DOF humanoid manipulator constitute the fitness function of HBBO. The proposed HBBO algorithm has been used to solve the inverse kinematics problem of the 8-DOF redundant humanoid manipulator. Numerical simulation results demonstrate the effectiveness of this method.

关键词: Inverse kinematics problem     8-DOF humanoid manipulator     Biogeography-based optimization (BBO)     Differential evolution (DE)    

Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantum

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1470-1483 doi: 10.1007/s11705-023-2329-5

摘要: In this paper, graphene oxide quantum dots with amino groups (NH2-GOQDs) were tailored to the surface of a thin-film composite (TFC) membrane surface for optimizing forward osmosis (FO) membrane performance using the amide coupling reaction. The results jointly demonstrated hydrophilicity and surface roughness of the membrane enhanced after grafting NH2-GOQDs, leading to the optimized affinity and the contact area between the membrane and water molecules. Therefore, grafting of the membrane with a concentration of 100 ppm (TFC-100) exhibited excellent permeability performance (58.32 L·m–2·h–1) compared with TFC membrane (16.94 L·m–2·h–1). In the evaluation of static antibacterial properties of membranes, TFC-100 membrane destroyed the cell morphology of Escherichia coli (E. coli) and reduced the degree of bacterial adsorption. In the dynamic biofouling experiment, TFC-100 membrane showed a lower flux decline than TFC membrane. After the physical cleaning, the flux of TFC-100 membrane could recover to 96% of the initial flux, which was notably better than that of TFC membrane (63%). Additionally, the extended Derjaguin–Landau–Verwey–Overbeek analysis of the affinity between pollutants and membrane surface verified that NH2-GOQDs alleviates E. coli contamination of membrane. This work highlights the potential applications of NH2-GOQDs for optimizing permeability and biofouling mitigation of FO membranes.

关键词: forward osmosis membrane     graphene oxide quantum dots     graft modification     anti-fouling membrane     XDLVO theory    

Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward

Hongtao ZHU, Wenna LI

《环境科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 294-300 doi: 10.1007/s11783-013-0486-3

摘要: Forward osmotic membrane bioreactor is an emerging technology that combines the advantages of forward osmosis and conventional membrane bioreactor. In this paper, bisphenol A removal by using a forward osmotic membrane bioreactor and a conventional membrane bioreactor that shared one biologic reactor was studied. The total removal rate of bisphenol A by the conventional membrane bioreactor and forward osmotic membrane bioreactor was as high as 93.9% and 98%, respectively. Biodegradation plays a dominant role in the total removal of bisphenol A in both processes. In comparison of membrane rejection, the forward osmosis membrane can remove approximately 70% bisphenol A from the feed, much higher than that of the microfiltration membrane (below 10%). Forward osmosis membrane bioreactor should be operated with its BPA loading rate under 0.08 mg·g ·d to guarantee the effluent bisphenol A concentration less than10 μg·L .

关键词: forward osmosis     membrane bioreactor     bisphenol A     microfiltration    

A review on the forward osmosis applications and fouling control strategies for wastewater treatment

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 661-680 doi: 10.1007/s11705-021-2084-4

摘要: During the last decades, the utilization of osmotic pressure-driven forward osmosis technology for wastewater treatment has drawn great interest, due to its high separation efficiency, low membrane fouling propensity, high water recovery and relatively low energy consumption. This review paper summarizes the implementation of forward osmosis technology for various wastewater treatment including municipal sewage, landfill leachate, oil/gas exploitation wastewater, textile wastewater, mine wastewater, and radioactive wastewater. However, membrane fouling is still a critical issue, which affects water flux stability, membrane life and operating cost. Different membrane fouling types and corresponding fouling mechanisms, including organic fouling, inorganic fouling, biofouling and combined fouling are therefore further discussed. The fouling control strategies including feed pre-treatment, operation condition optimization, membrane selection and modification, membrane cleaning and tailoring the chemistry of draw solution are also reviewed comprehensively. At the end of paper, some recommendations are proposed.

关键词: forward osmosis     wastewater treatment     membrane fouling     fouling control    

China Keeps Carrying Forward the Key Special Project of “Air Pollution Causes and Control”

Huan Liu,Kebin He

《环境科学与工程前沿(英文)》 2016年 第10卷 第5期 doi: 10.1007/s11783-016-0881-7

Design of nanofibre interlayer supported forward osmosis composite membranes and its evaluation in fouling

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1550-7

摘要:

• A fine fibre (40–60 nm diameter) interlayer (~1 µm thickness) was electrospun.

关键词: Forward osmosis     Electro-spinning     Interfacial polymerisation     Fouling     Polyvinylidene fluoride    

Analysis of the kinematic characteristics of a high-speed parallel robot with Schönflies motion: Mobility, kinematics

Fugui XIE,Xin-Jun LIU

《机械工程前沿(英文)》 2016年 第11卷 第2期   页码 135-143 doi: 10.1007/s11465-016-0389-7

摘要:

This study introduces a high-speed parallel robot with Schönflies motion. This robot exhibits a promising prospect in realizing high-speed pick-and-place manipulation for packaging production lines. The robot has four identical limbs and a single platform. Its compact structure and single-platform concept provides this robot with good dynamic response potential. A line graph method based on Grassmann line geometry is used to investigate the mobility characteristics of the proposed robot. A generalized Blanding rule is also introduced into this procedure to realize mutual conversion between the line graphs for motions and constraints. Subsequently, the inverse kinematics is derived, and the singularity issue of the robot is investigated using both qualitative and quantitative approaches. Input and output transmission singularity indices are defined based on the reciprocal product in screw theory and the virtual coefficient by considering motion/force transmission performance. Thereafter, the singular loci of the proposed robot with specific geometric parameters are derived. The mobility analysis, inverse kinematics modeling, and singularity analysis conducted in this study are helpful in developing the robot.

关键词: parallel robot     mobility     inverse kinematics     singularity     transmission performance    

General closed-form inverse kinematics for arbitrary three-joint subproblems based on the product of

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0681-7

摘要: The inverse kinematics problems of robots are usually decomposed into several Paden–Kahan subproblems based on the product of exponential model. However, the simple combination of subproblems cannot solve all the inverse kinematics problems, and there is no common approach to solve arbitrary three-joint subproblems in an arbitrary postural relationship. The novel algebraic geometric (NAG) methods that obtain the general closed-form inverse kinematics for all types of three-joint subproblems are presented in this paper. The geometric and algebraic constraints are used as the conditions precedent to solve the inverse kinematics of three-joint subproblems. The NAG methods can be applied in the inverse kinematics of three-joint subproblems in an arbitrary postural relationship. The inverse kinematics simulations of all three-joint subproblems are implemented, and simulation results indicating that the inverse solutions are consistent with the given joint angles validate the general closed-form inverse kinematics. Huaque III minimally invasive surgical robot is used as the experimental platform for the simulation, and a master–slave tracking experiment is conducted to verify the NAG methods. The simulation result shows the inverse solutions and six sets given joint angles are consistent. Additionally, the mean and maximum of the master–slave tracking experiment for the closed-form solution are 0.1486 and 0.4777 mm, respectively, while the mean and maximum of the master–slave tracking experiment for the compensation method are 0.3188 and 0.6394 mm, respectively. The experiments results demonstrate that the closed-form solution is superior to the compensation method. The results verify the proposed general closed-form inverse kinematics based on the NAG methods.

关键词: inverse kinematics     Paden–Kahan subproblems     three-joint subproblems     product of exponential     closed-form solution    

Fertilizer drawn forward osmosis as an alternative to 2nd pass seawater reverse osmosis: Estimation of

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1428-0

摘要:

• The boron concentration in diluted DS can satisfy the irrigation water standard.

关键词: Fertilizer drawn forward osmosis (FDFO)     Boron removal     Specific energy consumption (SEC)     Seawater reverse osmosis (SWRO)     Irrigation water production    

“NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions

Akshay Jain, Zhen He

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1052-9

摘要:

Resource recovery from wastewater is a key function of bioelectrochemical systems.

NEW resources to recover include Nutrient, Energy, and Water.

Identifying proper application niches can guide BES research and development.

More efforts should be invested to the application of recovered resources.

A mindset for energy performance and system scaling is critically important.

关键词: Bioelectrochemical systems     Resource recovery     Wastewater treatment     Energy     Nutrients    

A deep feed-forward neural network for damage detection in functionally graded carbon nanotube-reinforced

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1453-1479 doi: 10.1007/s11709-021-0767-z

摘要: This paper proposes a new Deep Feed-forward Neural Network (DFNN) approach for damage detection in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates. In the proposed approach, the DFNN model is developed based on a data set containing 20 000 samples of damage scenarios, obtained via finite element (FE) simulation, of the FG-CNTRC plates. The elemental modal kinetic energy (MKE) values, calculated from natural frequencies and translational nodal displacements of the structures, are utilized as input of the DFNN model while the damage locations and corresponding severities are considered as output. The state-of-the art Exponential Linear Units (ELU) activation function and the Adamax algorithm are employed to train the DFNN model. Additionally, in order to enhance the performance of the DFNN model, the mini-batch and early-stopping techniques are applied to the training process. A trial-and-error procedure is implemented to determine suitable parameters of the network such as the number of hidden layers and the number of neurons in each layer. The accuracy and capability of the proposed DFNN model are illustrated through two distinct configurations of the CNT-fibers constituting the FG-CNTRC plates including uniform distribution (UD) and functionally graded-V distribution (FG-VD). Furthermore, the performance and stability of the DFNN model with the consideration of noise effects on the input data are also investigated. Obtained results indicate that the proposed DFNN model is able to give sufficiently accurate damage detection outcomes for the FG-CNTRC plates for both cases of noise-free and noise-influenced data.

关键词: damage detection     deep feed-forward neural networks     functionally graded carbon nanotube-reinforced composite plates     modal kinetic energy    

Lithium-based draw solute for forward osmosis to treat wastewater discharged from lithium-ion battery

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 755-763 doi: 10.1007/s11705-022-2137-3

摘要: As draw solute is the core element of forward osmosis (FO) technology, here Li-Bet-Tf2N synthesized from a customized ionic liquid betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) and Li2CO3 recovered from lithium-ion battery (LIB) wastes is proposed as a novel draw solute to treat Li+-containing wastewater from LIB manufacturing through FO filtration. Having high dissociation ability and an extended structure, Li-Bet-Tf2N generates a sufficiently high osmotic pressure to drive the FO filtration efficiently along with insignificant reverse solute diffusion. Li-Bet-Tf2N produces a water flux of 21.3 L·(m2·h)−1 at 1.0 mol∙L–1 against deionized water, surpassing conventional NaCl and MgCl2 draw solutes with a higher water recovery efficiency and a smaller solute loss. Li-Bet-Tf2N induces a more stable and higher water permeation flux with a 10.0% water flux decline than NaCl and MgCl2 for which the water fluxes decline 16.7% and 16.4%, respectively, during the treatment of 2000 mg∙L–1 Li+-containing wastewater for 12 h. More remarkably, unlike other draw solutes which require intensive energy input and complicated processes in recycling, Li-Bet-Tf2N is easily separated from water via solvent extraction. Reproducible results are achieved with the recycled Li-Bet-Tf2N. Li-Bet-Tf2N thus demonstrates a novel class of draw solute with great potentials to treat wastewater economically.

关键词: forward osmosis     lithium-ion battery     draw solution     lithium-containing wastewater     water treatment    

Moving policy and regulation forward for single-use plastic alternatives

《环境科学与工程前沿(英文)》 2021年 第15卷 第3期 doi: 10.1007/s11783-021-1423-5

摘要: Single-use plastics are often used once or cannot be reused for extended periods. They are widely consumed with the rapid development of social economy. The waste generated by single-use plastics threatens ecosystem health by entering the environment and ultimately restricts sustainable human development. The innovation of sustainable and environmentally friendly single-use plastic alternative materials and the joint participation of governments, enterprises and the public are promising technologies and management approaches that can solve the problem of single-use plastics wastes. The development of single-use plastic alternative products can be promoted fundamentally only by improving relevant legislation and standards, providing differentiated industrial policies, encouraging scientific and technological innovation and expanding public participation.

关键词: Single-use plastic alternatives     Policy     Regulation     Sustainable development    

标题 作者 时间 类型 操作

Fast forward kinematics algorithm for real-time and high-precision control of the 3-RPS parallel mechanism

Yue WANG, Jingjun YU, Xu PEI

期刊论文

Inverse Kinematics Analysis of General 6R Serial Robot Mechanism Based on Groebner Base

WANG Yan, HANG Lu-bin, YANG Ting-li

期刊论文

Ahybrid biogeography-based optimization method for the inverse kinematics problem of an 8-DOF redundant

Zi-wu REN,Zhen-hua WANG,Li-ning SUN

期刊论文

Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantum

期刊论文

Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward

Hongtao ZHU, Wenna LI

期刊论文

A review on the forward osmosis applications and fouling control strategies for wastewater treatment

期刊论文

China Keeps Carrying Forward the Key Special Project of “Air Pollution Causes and Control”

Huan Liu,Kebin He

期刊论文

Design of nanofibre interlayer supported forward osmosis composite membranes and its evaluation in fouling

期刊论文

Analysis of the kinematic characteristics of a high-speed parallel robot with Schönflies motion: Mobility, kinematics

Fugui XIE,Xin-Jun LIU

期刊论文

General closed-form inverse kinematics for arbitrary three-joint subproblems based on the product of

期刊论文

Fertilizer drawn forward osmosis as an alternative to 2nd pass seawater reverse osmosis: Estimation of

期刊论文

“NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions

Akshay Jain, Zhen He

期刊论文

A deep feed-forward neural network for damage detection in functionally graded carbon nanotube-reinforced

期刊论文

Lithium-based draw solute for forward osmosis to treat wastewater discharged from lithium-ion battery

期刊论文

Moving policy and regulation forward for single-use plastic alternatives

期刊论文